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Abstracts 
 

The construction of virtual indoor spaces is crucial for the development of metaverses, virtual 
production, and other 3D content domains. Traditional methods for creating these spaces are 
often cost-prohibitive and labor-intensive. To address these challenges, we present a pipeline for 
generating digital twins of real indoor environments from RGB-D camera-scanned data. Our 
pipeline synergizes space structure estimation, 3D object detection, and the inpainting of missing 
areas, utilizing deep learning technologies to automate the creation process. Specifically, we 
apply deep learning models for object recognition and area inpainting, significantly enhancing 
the accuracy and efficiency of virtual space construction. Our approach minimizes manual labor 
and reduces costs, paving the way for the creation of metaverse spaces that closely mimic real-
world environments. Experimental results demonstrate the effectiveness of our deep learning 
applications in overcoming traditional obstacles in digital twin creation, offering high-fidelity 
digital replicas of indoor spaces. This advancement opens for immersive and realistic virtual 
content creation, showcasing the potential of deep learning in the field of virtual space 
construction. 
 
Keywords: Digital twin, Deep learning, 3D reconstruction, Image inpainting, 3D object 
detection, Virtual space construction.  
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1. Introduction 

The surge in interest surrounding virtual content technology stems from the swift 
advancement of remote activities, Virtual Reality (VR) / Augmented Reality (AR) hardware 
devices, and the maturation of 5G network technology. In 3D virtual spaces, economic, social, 
and cultural activities take place through interactions between people, leading to the growing 
utility of virtual spaces like the metaverse. To make users interested in and easily immersed in 
metaverse spaces, it is necessary to construct virtual spaces that accurately reflect real-world 
information, such as spatial layouts and objects. 

The two main methods for building virtual spaces are 3D modeling using authoring tools 
and video-based approaches using cameras. By utilizing 3D authoring software tools like 
Maya, 3D Max, and SketchUp, designers can directly model real-world information, 
encompassing objects, spaces, and more. This method has the advantage of creating noise-free 
virtual spaces. However, the resultant quality may vary depending on the proficiency of the 
designer, and it may entail significant costs and time investment [1]. Recent studies have 
focused on creating three-dimensional reconstructions of real-world spaces based on videos 
captured by cameras [2], which involves calculating the transformation relationships (feature 
points) between different viewpoints and extracting point clouds using depth information. This 
allows for the automatic reconstruction of realistic virtual spaces containing real-world spatial 
data (lighting, materials, etc.).  

However, point clouds frequently exhibit a notable amount of noise, and there is a potential 
for information loss in areas that remained unrecorded or were obscured by objects. This is 
particularly true for indoor spaces, which are complex and contain various objects that obscure 
wall surfaces. As a result, when extracting indoor point clouds, some areas are lost, and objects 
composed of point clouds are susceptible to increased noise levels as the complexity of the 
indoor space increases. Indoor environments particularly include reflective materials like glass 
and aluminum, and objects within the space also contain such information. This poses 
challenges during the extraction of point clouds from videos captured by RGB-D cameras, 
resulting in significant noise in the reconstructed space and objects. Moreover, the diverse and 
complex objects present in indoor spaces obscure information about wall surfaces and floor 
planes. Even with precise capture facilitated by RGB-D cameras, the extraction of point clouds 
for occluded areas remains unattainable, and there will persist unobserved areas, particularly 
within complex and spacious indoor environments. Consequently, the problem of point cloud 
vanishing arises. 

Concerning this, active research on automating the classification of 3D objects in indoor 
point clouds utilizes clustering and deep learning techniques [3-6], while other studies utilize 
interpolation and GAN-based methods to restore lost areas in point clouds [7-9]. However, in 
present studies, these tasks often occur as distinct processes, making it challenging to construct 
virtual spaces that closely resemble the real world. In response, this paper proposes a pipeline 
for constructing indoor virtual spaces by estimating the space structure from images obtained 
through a widely available device, the RGB-D camera, and utilizing 3D object recognition and 
lost area inpainting techniques. The proposed method minimizes manual work and enables the 
efficient creation of virtual indoor spaces. Unlike traditional point cloud-based indoor 
reconstruction methods, it can generate a 3D representation of occluded areas. Additionally, it 
overcomes the challenges encountered in automating the construction of indoor spaces and 
produces spaces that are easily applicable to future virtual content. The contributions of this 
paper are as follows: 
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■ The proposed pipeline can efficiently construct virtual indoor spaces, minimizing 
manual intervention. 
■ The method can generate a 3D representation of occluded areas, overcoming limitations 

of existing point cloud-based indoor reconstruction methods. 
■ The created spaces are suitable for utilization in future virtual content, providing 

practical benefits. 

2. Related Work 
We aim to extract point clouds from images captured by an RGB-D camera and use them to 
reconstruct indoor spaces. Recent research has been conducted on 3D reconstruction 
techniques and indoor space structure estimation based on indoor point clouds. In this section, 
we explore existing methods that are relevant to our research. 

2.1 3D Reconstruction 

3D reconstruction techniques are essential for automating the construction of virtual spaces 
that closely resemble the real world. Research in this area primarily focuses on extracting point 
clouds from images. However, challenges such as indoor space characteristics (reflective 
materials, complexity), occlusion caused by objects, and unobserved areas lead to noise and 
information loss in virtual spaces. To address these challenges, research is being conducted on 
modeling based on the space structure. One method for generating point clouds from images 
is the stereo vision approach, which is based on the principles of human binocular vision. 
Stereo vision enables the simultaneous acquisition of depth and color information and 
primarily utilizes affordable RGB-D cameras rather than laser scanning devices. Point clouds 
can be extracted by leveraging depth images that contain distance information between colors 
and objects. Since the publication of the study by Richard A. et al. [10], there has been active 
research on using RGB-D cameras to reconstruct indoor spaces and objects in real-time and 
visualize them in 3D point clouds. In their paper, they extracted color and depth from RGB-D 
images and used them to reconstruct indoor spaces in real-time. Additionally, Choi et al. [11] 
proposed a 3D reconstruction pipeline that improves accuracy. Their method effectively 
handles errors that occur during the alignment of consecutive point cloud frames and 
automatically removes them, increasing the reconstruction accuracy even in cases with 
significant errors. 

2.2 3D Object Classification & Detection 
Indoor space objects composed of point clouds are subject to various external factors, such 
indoor spaces complexity, noise from RGB-D cameras, and reflective materials, resulting in 
significant noise and areas of information loss. Moreover, the post-processing approach using 
traditional 3D authoring tools can be cumbersome. Therefore, there arises a necessity for 
streamlining the remodeling process. To address this, ongoing research is focused on 
automating the classification of both spaces and objects. Furthermore, with the advancements 
in deep learning technology, there have been studies on classifying 3D objects using deep 
learning models. Notably, Qi et al. [5] proposed the PointNet neural network, which automates 
the classification of spaces and objects in indoor point clouds. PointNet utilizes the max-
pooling function to extract global features of the point cloud. However, owing to the inherent 
characteristics of the max-pooling function, local information, excluding the maximum values, 
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is lost, which can lead to performance degradation in classification processes that require 
precise boundary delineation. 

To address this issue, the PointNet++ neural network proposed by Qi et al. extracts feature 
vectors containing local information, improving the accuracy compared to the PointNet model 
[6]. PointNet++ utilizes a hierarchical U-Net architecture to extract local features of various 
sizes, integrating them to enhance classification and segmentation performance. In addition, 
in the VoteNet deep learning model proposed by Qi et al., the PointNet++ neural network is 
employed to design a network that detects 3D objects from point clouds [3]. By estimating the 
centroid of objects from the point cloud, points close to the object center are obtained, and 
these points estimate the 3D bounding box of the object based on the point features of the 
cluster.  

2.3 Inpainting of the Lost Area 
When using an RGB-D camera to capture indoor spaces and construct virtual environments, 
areas occluded by objects or not captured during the recording process result in information 
loss during the extraction of point clouds. Additionally, when classifying and removing objects, 
the corresponding point clouds of those objects are lost. Therefore, there is ongoing research 
on restoring the lost areas. Interpolation- and GAN-based methods are the two major 
methodologies for reconstructing missing regions in point clouds. Cui et al. [7] determined the 
boundaries of lost areas by clustering neighboring points and connecting them.  Based on this, 
interpolation methods are employed to recover incomplete boundaries. The proposed 
approaches include reinstating lost areas through the utilization of the Poisson-based surface 
reconstruction algorithm. This involves leveraging detected boundary characteristics and 
using surface information symmetric to the boundaries. However, these methods may be 
unreliable when lost areas are large or numerous due to threshold-based boundary 
determination and inpainting. 

Tchapmi et al. [8] proposed the TopNet neural network, which introduces a decoder that 
generates structured point clouds without assuming a specific structure or topology, generating 
point clouds following a hierarchical root tree structure. Zitian et al. [9] proposed the Pf-net 
neural network, which estimates the lost point cloud through a hierarchical generation network, 
which incorporates hierarchical completion and adversarial losses to generate missing areas. 
These existing studies contribute to the inpainting of lost point clouds, but obtaining the 
original data from noisy indoor point clouds can be challenging. In this study, we employ a 
inpainting method proposed by Ulyanov et al. [12], which allows inpainting without the 
original data by defining the lost areas using binary masks and restoring them by leveraging 
the correlations with non-zero pixels. It obtains promising results by learning the intrinsic 
image texture through pixel comparisons without directly considering the binary mask regions 
during inpainting.  

3. Methodology 
We employ RGB-D cameras to acquire images, subsequently separating them into color and 
depth images. This process enables us to derive the intrinsic structural details of the 
environment. Building upon this foundation, we proceed to reconstruct the virtual space. We 
estimate the structure of the constructed space, recognize 3D objects in it, remove the 
recognized objects, and restore the lost areas. Fig. 1 shows the proposed pipeline.  
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Fig. 1. Pipeline of the proposed spatial structure-based approach. 

3.1 Indoor Point Cloud extraction 
The Azure Kinect camera was used to acquire indoor spaces extract color and depth images, 
and the Open3D library was used to obtain the point clouds. The transformation relationship 
between RGB and depth image pairs was estimated using the ORB algorithm [13]. This 
involved identifying feature points across the image pairs and subsequently removing any 
incorrectly matched points. Furthermore, we deduced the camera trajectory by employing the 
5-Point RANSAC algorithm [14]. 

Acquiring images using an RGB-D camera can introduce noise, and the accumulated errors 
make estimating the camera's position challenging. To address this issue, it is necessary to find 
consistency between the current frame and the registered camera positions in the past pose 
graph to reduce accumulated errors. Hence, we optimized the positions of the registered 
cameras in the pose graph to minimize errors.  

 
(1) 
 

where 𝑥𝑥𝑖𝑖  and 𝑥𝑥𝑗𝑗  represent the position information of nodes in the current pose graph, the 
difference between the next frame node position and the previous frame node position is 
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denoted as 𝑒𝑒𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖,𝑥𝑥𝑗𝑗), Ωij represents the information matrix between the 𝑖𝑖𝑡𝑡ℎ and 𝑗𝑗𝑡𝑡ℎ nodes, and 
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑥𝑥 extracts the node with the smallest sum of the loss function. 

Using this process, we used 5,300 color and depth images as input and divided them into 
100 frames to extract 53 partial point clouds. As illustrated in Fig. 2, when inputted with the 
color and depth images, the corresponding partial point cloud is extracted. 

 

 
Fig. 2. Results of 53 partial point cloud extraction. 

 
The Colored-ICP algorithm [15] was used to detect the correspondence relationships between 
the extracted partial point clouds. By aligning the partial point clouds, we obtained the 
complete indoor space point cloud, as illustrated in Fig. 3. 

 
Fig. 3.  Result of total indoor space point cloud extraction. 
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3.2 Deep Learning-Based Indoor Corner Detection 
Although we obtained the complete indoor space point cloud, there are loss and noise areas, 
illustrated in Fig. 4, due to occlusion by objects and errors during the alignment of the partial 
point clouds. To address these issues, the space structure was estimated by extracting the floor 
plane by orthogonally projecting the complete indoor space point cloud. Thereafter, using the 
extracted floor plane, we detected the corners by applying the deep learning-based YOLOv7 
[16] network rather than traditional computer vision-based corner detection methods such as 
Harris Corner, SIFT [18], and ORB [13], which are not suitable for point clouds owing to their 
irregular shape and noise contained in pixel values. 
 

 
Fig. 4.  Example of Missing areas and noise. 

 
We converted the extracted floor planes into binary images and collected image data by 

restoring the lost areas. The collected data was classified into "Corner" and "Line" classes, and 
data augmentation techniques were applied to construct a total of 2,000 training data. Fig. 5 
provides an example of the constructed dataset. 

 

 
Fig. 5.  Example of the corner & line train dataset. 

 
Based on the constructed dataset, we trained the YOLOv7 using an Intel(R) Core (TM) i7-
10700K CPU @ 3.80GHz 3.79 GHz processor and NVIDIA GeForce RTX 3090 GPU. The 
dataset consisted of 1300, 400, and 300 samples for training, validation, and test, respectively. 
We conducted the training for 300 epochs using the Adam optimizer with a learning rate of 
0.001. Fig. 6 shows the results of corner detection using the trained model. 
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Fig. 6.  Results of corner detection. 

 
After corner detection, we visualized the 3D spatial structure by connecting bounding boxes’ 

center coordinates and adding the z-coordinate to each point based on the constructed floor 
plane, as illustrated in. Fig. 7. 

 
Fig. 7.  Visualization of spatial structure. 

3.3 3D Object detection 
For 3D object detection, we employed VoteNet [3] using the SUN RGB-D dataset—a 
comprehensive repository of indoor point cloud data. It consists of 10,335 RGB-D images, 
146,617 2D polygons, and 64,595 3D bounding boxes captured using Intel RealSense, Asus 
Xtion, Kinect v1, and Kinect v2 cameras. we extracted the data acquired with Kinect v2 from 
the SUN RGB-D dataset and trained VoteNet [3]. However, because our dataset point cloud 
was extracted based on images acquired with Azure Kinect, the coordinate system used during 
model training did not match, resulting in incorrect object detection, as illustrated Fig. 8. 
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Fig. 8.  Visualization of spatial structure. 

 
we aligned the coordinate systems to perform object detection correctly. The point cloud 

extracted in this study had the y-axis pointing upward, while the point cloud used as training 
data had the z-axis pointing upward. Therefore, we rotated our point cloud by 90° along the x-
axis to align the coordinate systems and reconducted object detection using the trained model. 
After object detection, we used the bounding box of the detected objects to apply object 
removal to the point cloud. Fig. 9 shows the results after removing the detected objects.  

 
Fig. 9.  Results of object detection removal. 

 
 
 
 



2390             Wonseop Shin et al.: Generating 3D Digital Twins of Real Indoor Spaces based on Real-World Point Cloud Data 

3.4 Inpainting of Missing Area 
After detecting and removing objects from the point cloud, we used an image-based inpainting 
approach to restore the missing and occluded areas where objects were located. The entire 
indoor point cloud was orthographically projected into a 2D image, and deep image prior (DIP) 
[12] was utilized for inpainting. To use DIP, the normal vector of each plane composing the 
indoor point cloud was extracted, and the binary image of the missing area was defined based 
on the orthographic projection of these normal vectors. Fig. 10 shows the results of the 
orthographically projected planes and the corresponding defined missing areas. Subsequently, 
the missing areas were defined as binary images and fed as input to DIP, where the correlation 
among non-zero pixels was learned to restore the missing areas and perform inpainting, as 
illustrated in Fig. 11. 

 
Fig. 10.  Regions lost after orthogonal projection. 
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Fig. 11.  Texture generation with DIP neural networks. 

3.5 3D Model Face Generation and Texture Mapping 
The estimated spatial structure consists of points represented in x, y, and z coordinates, 
interconnected to form surfaces. However, information pertaining to the orientation of faces 
is required to map textures onto these surfaces. As our estimated spatial structure only contains 
information about points, it is necessary to add information about the faces by selecting a 
minimum of three points.  Thus, information for face construction was added using the spatial 
structure saved as an OBJ file. The OBJ file consists of v, vn, vt, f, mtlilb, and usemtl, where v 
represents 4-dimensional vertex information, vn represents 3-dimensional vertex normals, vt 
represents 3-dimensional texture information and coordinates, f represents information about 
the faces, mtlilb contains definitions for materials and textures, and usemtl indicates the 
specific texture to be used from the mtl file. We defined the coordinates of points sequentially, 
starting from the floor surface and subsequently progressing to the top, right, bottom, and left 
wall surfaces. This approach ensured that the point indexes remained properly aligned. Fig. 
12 displays the results of generating faces by aligning the coordinates for each wall surface. 
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Fig. 12. Results of generating faces by aligning the coordinates for each wall surface. 

 

After generating the faces, the restored textures, comprising 2D images, were applied to 
construct the 3D virtual indoor space. To apply the textures onto the generated surfaces, a 
transformation was necessary, and UV coordinates were used as the reference coordinate 
system for this transformation. The UV mapping technique was specifically employed to 
achieve this objective. UV maps were extracted using the trimesh API [17], and the textures 
were mapped based on them to construct the virtual indoor space. Fig. 13 shows the UV map 
extraction and texture mapping results. 

 
Fig. 13. UV map extraction and texture mapping. 

4. Experimental Results 

4.1 Corner Detection Results 
The YOLOv7 was trained to detect corners on the floor, and the trained model was used for 
corner detection. To quantitatively evaluate the trained model, the metrics F1-Score, 
precision, and recall were used. The corner detection model performance is listed in Table 1. 
 

Table 1. Corner detection model quantitative evaluation results. 
Precision Recall F1-Score 

0.9 0.85 0.87 
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We conducted a comparison between an existing corner detection algorithm, Harris corner 
detection [19], and our trained model. The Harris corner detection showed inaccurate results 
by detecting irregular pixel values on the image boundaries as corners, while our model 
detected corners more accurately, as illustrated in Fig. 14. 

 
Fig. 14. Comparison of corner detection. (a) Harris corner detection, (b) YOLOv7 corner detection. 

 

 
Fig. 15. Area restored with our proposed pipeline. 

4.2 Qualitative Results 
We compared the virtual spaces constructed using the proposed pipeline with those 
constructed using RGB-D camera-acquired images. When constructing the virtual space with 
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an RGB-D camera, there were noise and missing areas due to objects occluding the wall 
surfaces. However, by using the proposed pipeline, the wall surfaces of the virtual space 
showed significant improvement, with noise and missing areas effectively resolved. Fig. 15 
shows a comparison of the original face texture and the face texture created by our pipeline, 
and Fig. 16 shows the outcome of using the mapped textures to construct the 3D virtual indoor 
space. 

 
Fig. 16. Virtual indoor space construction 

4.3 Extension for Application 
Using the proposed pipeline, the constructed virtual space can be further edited and utilized 
with higher scalability based on the virtual space constructed using 3D modeling software. In 
this study, we integrated the objects modeled in Autodesk Maya into the constructed virtual 
space and rendered the final indoor virtual space. Fig. 17 shows the virtual indoor space 
rendering result, incorporating both the constructed virtual space and objects modeled in 
Autodesk Maya. 

 
Fig. 17. Virtual indoor space rendering result, incorporating the constructed virtual space and objects 

modeled in Autodesk Maya. 
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5. Conclusion 
In this paper, we proposed a space structure-based modeling pipeline to efficiently create 
virtual indoor spaces while minimizing manual efforts and overcoming issues with traditional 
virtual space creation methods. The pipeline utilizes point clouds extracted from real-world 
indoor spaces acquired through RGB-D cameras as the base dataset. The proposed pipeline 
operates through indoor virtual space construction, indoor space structure estimation, 3D 
objects detection, texture generation, and texture mapping.  

We reconstructed the virtual indoor space using 3D reconstruction techniques based on the 
Open3D library and addressed the noise in the extracted point clouds through space structure-
based modeling. Additionally, we employed the VoteNet neural network for object detection 
and used the DIP neural network to restore the missing areas after removing the classified 
objects. As a result, we successfully constructed a virtual indoor space without objects, 
demonstrating its usability in 3D authoring tools and validating its practicality in VR, AR, and 
metaverse content creation. The proposed method allows users to construct and edit virtual 
spaces easily, significantly contributing to the entertainment industry. 
Currently, our pipeline generates textures based on the outer walls of indoor spaces and maps 
them to the estimated space structure for constructing the virtual indoor space. However, wall 
thickness information is required to address the inner walls of indoor spaces. Therefore, future 
research should focus on generating thickness information and addressing the outer and inner 
wall textures, thereby further enhancing the construction of virtual indoor spaces. 
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